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ABSTRACT:  

The teaching of differential equations is a fundamental part of the education of engineering 

students as a tool for use in a wide variety of applications. A remarkable role in the study of 

differential equations is occupied by the Wave equation due to the variety of phenomena that 

it allows to model. The present research aims to describe the teaching of the wave equation 

from the point of view of its mathematical development and the use of Fourier's theory as a 

solution method. In the first part of the article the mathematical framework that defines the 

wave equation is defined, then by the use of case studies the analytical solution of the 

mathematical model is developed step by step and finally by the application of the 

computational simulation the behavior of the solution in different circumstances is 

developed. 
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1.INTRODUCTION 

 

The importance of the applications of differential equations for mathematical modeling 

shows their importance in the education of engineering students [1]. For this reason, teachers 

are thinking of new formative strategies for the teaching of mathematical models [2]. In this 

sense, modeling is a didactic tool in the teaching of differential equations for engineering 

careers [3]. 



Webology (ISSN: 1735-188X) 

Volume 19, Number 6, 2022 

 

891                                                                    http://www.webology.org 

 

In particular, the wave equation has become an important mathematical model for 

understanding a variety of natural phenomena [4]. Therefore, the study of the wave equation 

behavior is fundamental in the training of engineering students. 

This article intends to study the wave equation to show its solution method as an important 

tool for teaching relevant mathematical techniques [5]. This research first of all sets out the 

mathematical model of the wave equation from physical processes, after which the basic 

concepts of Fourier's theory are defined. Subsequently, by means of two case studies, the 

solution of the wave equation is calculated, and its solution is simulated to define the 

convergence of the associated series. 

 

2. MATHEMATICAL MODEL  

The main aim of this section is to define the relevant mathematical concepts in the solution 

of the wave equation. Firstly, the wave equation is defined from the laws of physics, 

secondly, the basic elements of the Fourier theory are defined to be applied later. 

 

2.1 Wave Equation 

Consider a string of length L held at its ends on the x -axis at x = 0 and x = L. Suppose the 

string begins to vibrate from its initial position. Assuming that the string vibrates only in a 

fixed plane, let F(x, y) be the function representing the transverse displacement, where time  

t ≥ 0 and x is the position of the string. 

In the model we assume that the rope has a constant density ρ, is perfectly elastic and the 

only force acting on the system is the tension force. Consider a small portion of the string 

between points A and B, located at x and x + ∆x as shown in Figure 2.1. 

 
Applying Newton's second law to the vertical components of the tension force gives the 

equation [6]  

−τsen(α) + τsen(β) = ma,    (2.1) 
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where m represents the portion of the mass between x and x + ∆x, and a is its acceleration. 

Then, a =
∂2F

∂t2  and m = ρ∆x, moreover for small angles sen(α) ≈ tan(α).  The above 

considerations allow from the equality (2.1) to generate equation, 

−τ tan(α) + τ tan(β) = ρ∆x
∂2F

∂t2
.     

(2.2) 

Since the slope of the tangent line to the graph of F(x, y)   is  
∂F

∂x
(x, t), then tan(α) =

∂F

∂x
(x, t) 

and tan(β) =
∂F

∂x
(x + ∆x, t). Substituting the above equalities into (2.3) gives. 

 

∂F
∂x

(x + ∆x, t) −
∂F
∂x

(x, t)

∆x
=

ρ

τ

∂2F

∂t2
. 

(2.3) 

In equation (2.3) when ∆x → 0, the left-hand side tends to 
∂2F

∂x2
(x, t), thus generating the 

wave equation in one dimension for free vibrations of a string 

∂2F

∂t2
(x, t) = c2

∂2F

∂x2
, 

(2.4) 

 

where c2 =
ρ

t
. Note that c represents a velocity, since τ has units of 

length

time2  and ρ has units 

of mass/length, thus c2 has units of 
length2

time2 . 

 

2.2 Fourier Theory 

 

The first approach to the fact of approximating a function by a series of functions occurs 

in the study of Differential Calculus, when considering the representation of a Taylor 

series around a point 𝑥0  [7]. In this case the terms of the series are polynomial functions.  

There are other representations of a function in the form of an infinite series of functions, 

in this article we will study the Fourier series, in which the infinite series is composed of 

trigonometric functions.  

In addition to the surprising characteristics that these series have in themselves, or their 

application in the study of mechanical systems or electrical systems [8], their importance 

lies in their usefulness to solve partial differential equations. 

In this section we aim to define the Fourier series, some important characteristics and 

results, accompanying each aspect to facilitate their understanding. 

Fourier series allow us to represent periodic functions that are important in mathematics 

applied to engineering. 

The Fourier series of the function 𝑓(𝑥) is given by the expression [9] 

 

  𝑓(𝑥) =
𝑎0

2
+ ∑ (𝑎𝑛 𝑐𝑜𝑠

𝑛𝜋𝑥

𝐿
+ 𝑏𝑛 𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿
)∞

𝑛=1   (2.5) 
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The coefficients of the Fourier series (2.5) are given by the following integrals [9]: 

 

𝑎0 =
1

𝐿
∫ 𝑓(𝑥)𝑑𝑥,

𝐿

−𝐿

 𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑐𝑜𝑠

𝑛𝜋𝑥

𝐿
𝑑𝑥,

𝐿

−𝐿

 𝑏𝑛

=
1

𝐿
∫ 𝑓(𝑥) 𝑠𝑒𝑛

𝑛𝜋𝑥

𝐿
𝑑𝑥 

𝐿

−𝐿

 

(2.6) 

 

The following theorem gives a convergence criterion for the Fourier series (2.5) for a large 

class of functions. 

Theorem. [9] Let 𝑓(𝑥) be a piecewise smooth function, that is, a function such that f(x) and 

f'(x) are continuous on the interval  [−𝐿, 𝐿]  (or on the interval  [−𝐿, 𝐿]), except perhaps at a 

finite number of points at which these two functions exhibit finite (avoidable or jump) 

discontinuities. Then the Fourier series converges to the function 𝑓(𝑥) at the points of 

continuity, and converges to the mean value    

𝑓(𝑥 +) + 𝑓(𝑥 −)

2
 

(2.7) 

                                                                                          

at each discontinuity point, where 𝑓(𝑥+)  denotes the limit of 𝑓 at 𝑥 from the right, 

and 𝑓(𝑥−) denotes the limit of 𝑓 at 𝑥 from the left.  

 

3. RESULTS AND DISCUSSION. 

This section will show the modeling of the wave equation by using the three aspects defined 

in the mathematical model. Namely, the formulation of the differential equation, its 

subsequent solution by means of Fourier theory and finally the analysis of the convergence 

of the Fourier series by means of the use of software. 

 

3.1 Vibrating string with fixed ends 

 

The most characteristic example of the wave equation arises when the ends of the string are 

fixed, this is seen in the boundary conditions (BC). The initial conditions (IC) give 

information about the function and its partial derivative with respect to the time variable 

when this is zero. 

Suppose the wave equation (3.1) is defined, following the model (2.4), with boundary 

conditions defining the fixed ends. 

 

                      
𝜕2𝐹

𝜕𝑡2 = 4
𝜕2𝐹

𝜕𝑥2 , 0 < 𝑥 < 𝜋, 𝑡 > 0                         (EDP)          (3.1) 

𝐹(0, 𝑡) = 0,      𝐹(𝜋, 𝑡) = 0,     𝑡 > 0                      (BC)           (3.2) 
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𝐹(𝑥, 0) = {
𝑥,          𝑠𝑖      0 < 𝑥 <

𝜋

2

𝜋 − 𝑥,     𝑠𝑖 
𝜋

2
< 𝑥 < 𝜋

,      𝑢𝑡(𝑥, 0) = 1         (IC)         
(3.3) 

To solve the wave equation (3.1) subject to the conditions (3.2) and (3.3), the separable 

variables method is applied [10]. This method suggests reducing the solution to the 

application of the theory of differential equations in one variable and Fourier's theory. 

Suppose that the solution is given by the product of a function of 𝑥 and another function of 

𝑡, that is, 

𝐹(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡). 

 

The PDE (3.1) is equivalent to the expression 𝑋(𝑥)𝑇′′(𝑡) = 4𝑋′′(𝑥)𝑇(𝑡)  or with a simpler 

notation 𝑋𝑇′′ = 4𝑋′′𝑇. When doing transposition of terms: 

 

𝑋′′

𝑋
=

𝑇′′

4𝑇
. 

 

The left side of the above equation depends on 𝑥 while the right side depends on 𝑡, therefore, 

in order to have equality the two terms must be equal to the same constant, which we will 

denote −𝜆, obtaining the expression: 

 

𝑋′′

𝑋
=

𝑇′′

4𝑇
= −𝜆.                                               (3.4) 

From (3.4) we obtain the second order ODE 𝑋′′ + 𝜆𝑋 = 0. 

We now analyze the boundary conditions (3.2). Since 𝐹(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡), the first CF 

𝐹(0, 𝑡) = 0  translates into 𝑋(0)𝑇(𝑡) = 0, and thus 𝑋(0) = 0. Similarly, the second CF 

𝐹(𝜋, 𝑡) = 0 implies 𝑋(𝜋)𝑇(𝑡) = 0, and thus 𝑋(𝜋) = 0. 

Putting together the above steps, we must find the values of 𝜆 and the functions 𝑋(𝑥) that 

satisfy 

       𝑋′′ + 𝜆𝑋 = 0,     0 < 𝑥 < 𝜋,     𝑋(0) = 0,     𝑋(𝜋) = 0              (3.5) 

The ODE (3.5) is precisely a Sturm-Liouville problem [12] with eigenvalues 𝜆𝑛 = 𝑛2 and 

the corresponding eigenfunctions, except for constant multiples, are  

 

𝑋𝑛(𝑥) = 𝑠𝑒𝑛(𝑛𝑥) , 𝑛 = 1, 2, 3, ⋯. 

 

Equation (3. 4) also gives rise to the following second order ODE in terms of the time 

variable:   𝑇′′ + 4𝜆𝑇 = 0, and since we know that 𝜆𝑛 = 𝑛2 we have 𝑇′′ + 4𝑛2𝑇 = 0  ⇔

  𝑇′′ + (2𝑛)2𝑇 = 0,   𝑛 = 1, 2, 3, ⋯ its auxiliary equation is 𝑟2 + (2𝑛)2 = 0 ⇒ 𝑟 = ±2𝑛𝑖, 

therefore, 

 

𝑇𝑛(𝑡) = 𝑎𝑛 𝑐𝑜𝑠(2𝑛𝑡) + 𝑏𝑛 𝑠𝑒𝑛(2𝑛𝑡). 
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The method of separable variables tells us that the solutions sought are of the form 

 

𝐹𝑛(𝑥, 𝑡) = 𝑋𝑛(𝑥)𝑇𝑛(𝑡) = 𝑠𝑒𝑛(𝑛𝑥) [𝑎𝑛 𝑐𝑜𝑠(2𝑛𝑡) + 𝑏𝑛 𝑠𝑒𝑛(2𝑛𝑡)]. 

 

The principle of superposition indicates that any finite linear combination [9] of the form 

 

∑ 𝐹𝑛(𝑥, 𝑡)

𝑁

𝑛=1

= ∑ 𝑠𝑒𝑛(𝑛𝑥) [𝑎𝑛 𝑐𝑜𝑠(2𝑛𝑡) + 𝑏𝑛 𝑠𝑒𝑛(2𝑛𝑡)]                     (3.6)

𝑁

𝑛=1

 

 

also satisfies PDE (3.1) and BC (3.2). 

The function of the condition (3.3) verifies the conditions of the theorem of section 2.2, 

therefore it is possible to calculate the coefficients 𝑎𝑛 y 𝑏𝑛 that occur by means of the 

expressions (2.6) to generate the respective values 𝑎𝑛 =
4

𝜋𝑛2 𝑠𝑒𝑛
𝑛𝜋

2
. Deriving term by term 

the expression (4.6) with respect to 𝑡 and evaluating such derivative at 𝑡 = 0, it is deduced 

that 

  𝐹(𝑥, 0) = 1 = ∑ 2𝑛𝑏𝑛𝑠𝑒𝑛(𝑛𝑥) ⇒ 2𝑛𝑏𝑛 =
2

𝜋
∫ 𝑠𝑖𝑛 𝑛𝑥 𝑑𝑥 =

2[1−(−1)𝑛]

𝑛𝜋

𝜋

0
∞
𝑛=1 ⇒ 

𝑏𝑛 =
1 − (−1)𝑛

𝑛2𝜋
 

Applying (2.5), we calculate the solution of the wave equation where its respective Fourier 

series is 

𝐹(𝑥, 𝑡) = ∑ 𝑠𝑒𝑛(𝑛𝑥) (
4

𝜋𝑛2
𝑠𝑒𝑛

𝑛𝜋

2
𝑐𝑜𝑠(2𝑛𝑡) +

1 − (−1)𝑛

𝑛2𝜋
𝑠𝑒𝑛(2𝑛𝑡))

∞

𝑛=1

             (3.7) 

 

For pedagogical purposes it is possible to represent the convergence of the series (3.7) using 

the geogebra software [12]. Figure 3.1 shows the behavior of the series (3.7) varying 𝑛 =

5, 8,12 for 𝑡 = 0.8. 
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3.2 Vibrating string with free ends 

 

The mathematical model that we will study in this section are very similar to those of the 

previous section, however, a small modification is introduced in the boundary conditions, in 

the previous section the fixed extremes were considered, that is to say, the solution function 

𝐹(𝑥, 𝑡) is zero at the extremes of the considered interval. 

Suppose the wave equation (3.1) is defined, following the model (2.4), with boundary 

conditions defining the fixed ends. 

 

𝜕2𝐹

𝜕𝑡2 = 9
𝜕2𝐹

𝜕𝑥2 ,     0 < 𝑥 < 2,      𝑡 > 0                   (EDP)           (3.8) 

𝐹𝑥(0, 𝑡) = 0,      𝐹𝑥(2, 𝑡) = 0,     𝑡 > 0                     (BC)           (3.9) 

              𝐹(𝑥, 0) = 2𝑥 − 𝑥2,      𝐹𝑡(𝑥, 0) = 1,    0 < 𝑥 < 2             (IC)           (3.10) 

We again employ the method of separable variables, we assume that the solution is of the 

form: 𝐹(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡). The PDE (3.8) implies the expression   from this equation 

follows:   

𝑋′′

𝑋
=

𝑇′′

9𝑇
= −𝜆. (3.11) 

Equation (3.8) and the BC (3.9) lead to the regular Sturm-Liouville problem 

 

                     𝑋′′ + 𝜆𝑋 = 0,   0 < 𝑥 < 2,   𝑋′(0) = 0,   𝑋′(2) = 0.                       (3.12) 

 

In a similar way to the previous section, the solution is generated for (3.12)  

 

𝑋0(𝑥) = 1 y 𝑋𝑛(𝑥) = 𝑐𝑜𝑠 (
𝑛𝜋𝑥

2
) , 𝑛 = 1, 2, 3, ⋯.                           (3.13). 
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By using the eigenvalues in the expression (3.11) we obtain the second order ODE in terms 

of the time variable: T′′ + 9λnT = 0,  for λ0 = 0 this expression is T′′ = 0 ⇒ T0(t) =
a0

2
+

b0t

2
, and for the other eigenvalues we have 

T′′ + 9λnT = 0 ⇔ T′′ + (
3nπ

2
)

2

T = 0 ⇒ Tn(t) = an cos
3nπt

2
+ bn sin

3nπt

2
.  

Since u(x, t) = ∑ XnTn
∞
n=1 ,  then the solution is given by the formula: 

 

F(x, t) =
a0

2
+ ∑ an cos (

nπx

2
) cos (

3nπt

2
) +

b0t

2
+ ∑ bn cos (

nπx

2
) sin (

3nπt

2
)

∞

n=1

∞

n=1

 

 

Evaluating the solution at t = 0  and using the first IC of we have 

 

F(x, 0) = 2x − x2 =
a0

2
+ ∑ an cos (

nπx

2
)

∞

n=1

 

As in the previous section, the coefficients are computed as follows: 

 

a0 =
4

3
, an =

8[(−1)n+1 − 1]

n2π2
 

 

Finally, we derive F(x, t) term by term with respect to t, evaluate at t = 0  and obtain 

 

Ft(x, 0) = 1 =
b0

2
+ ∑

3nπbn

2
cos (

nπx

2
)

∞

n=1

 

we find another cosine Fourier series: 

 

b0 =
2

2
∫ 1dx = 2,     

3nπbn

2
=

2

2
∫ cos (

nπx

2
) dx = 0 ⇒ bn = 0

2

0

2

0
. 

 

The solution is to: 

 

F(x, t) =
2

3
+ t + ∑

8[(−1)n+1 − 1]

n2π2
cos (

nπx

2
) cos (

3nπt

2
)

∞

n=1

                (3.9) 

For pedagogical purposes it is possible to represent the convergence of the series (3.9) using 

the geogebra software. Figure 3.2 shows the behavior of the series (3.9) varying n = 5, 8,12 

for t = 0.8. 
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4.CONCLUSIONS 

The present research derives from the laws of physics and basic concepts of differential 

calculus the mathematical model that represents the wave equation, this analysis strengthens 

the relationship between mathematical and physical concepts in the teaching of engineering 

students. Later on, by means of the study of two mathematical models of physical vibrations, 

the solution of the wave equation is calculated by means of Fourier analysis techniques, 

generating a series that represents the wave equation as a function of position and space. 

Finally, through the use of software, the convergence of the series for different values of time 

is described, highlighting the relevance of the use of technology in the teaching of differential 

equations.  
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